Adaptive Quadrature for Sharply Spiked Integrands

نویسندگان

  • Samarth Agarwal
  • Michael Povolotskyi
  • Tillmann Kubis
  • Gerhard Klimeck
چکیده

A new adaptive quadrature algorithm that places a greater emphasis on cost reduction while still maintaining an acceptable accuracy is demonstrated. The different needs of science and engineering applications are highlighted as the existing algorithms are shown to be inadequate. The performance of the new algorithm is compared with the well known adaptive Simpson, Gauss-Lobatto and GaussKronrod methods. Finally, scenarios where the proposed algorithm outperforms the existing ones are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vectorized Adaptive Quadrature in Matlab

Adaptive quadrature codes process a collection of subintervals one at a time. We show how to process them all simultaneously and so exploit vectorization and the use of fast built-in functions and array operations that are so important to efficient computation in Matlab. Using algebraic transformations we have made it just as easy for users to solve problems on infinite intervals and with moder...

متن کامل

Parallel Globally Adaptive Quadrature on the KSR

New algorithms for parallel one-dimensional globally adaptive quadrature are developed. The algorithms are implemented on a Kendall Square Research KSR-1 parallel computer and numerical results are presented. The most successful algorithm gives signiicant speedups on a range of hard problems, including ones with singular integrands.

متن کامل

An Improved Bayesian Framework for Quadrature of Constrained Integrands

Quadrature is the problem of estimating intractable integrals, a problem that arises in many Bayesian machine learning settings. We present an improved Bayesian framework for estimating intractable integrals of specific kinds of constrained integrands. We derive the necessary approximation scheme for a specific and especially useful instantiation of this framework: the use of a log transformati...

متن کامل

1 Obtaining O ( N − 2 + ǫ ) Convergence for Lattice Quadrature Rules ⋆ Fred

Abstract. Good lattice quadrature rules are known to have O(N) convergence for periodic integrands with sufficient smoothness. Here it is shown that applying the baker’s transformation to lattice rules gives O(N) convergence for nonperiodic integrands with sufficient smoothness. This approach is philosophically and practically different than making a periodizing transformation of the integrand,...

متن کامل

Radial quadrature for multiexponential integrands

We introduce a Gaussian quadrature, based on the polynomials that are orthogonal with respect to the weight function ln(2)x on the interval [0, 1], which is suitable for the evaluation of radial integrals. The quadrature is exact if the non-Jacobian part of the integrand is a linear combination of a geometric sequence of exponential functions. We find that the new scheme is a useful alternative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014